а) Решите неравенство
б) Решите уравнение
в) Найдите все b, при которых система неравенств
имеет единственное решение.
Спрятать решениеРешение. а) Преобразуем исходное выражение при условии (иначе оно не определено) и рационализируем его
Вернемся к неравенству
Множитель положителен при и на знак не влияет. Корнями остальных множителей будут и причем
а и меньше двойки и нас не интересуют. С помощью метода интервалов получим ответ на неравенство
Ответ:
б) Домножим уравнение на отметив сразу, что точки не являются корнями исходного уравнения, поскольку для них и но Решим
Осталось выкинуть точки вида поскольку они появились в ответе от умножения на Они получаются, если k делится на 3 но не на 6. Окончательно и
Ответ:
в) Найдите все b, при которых система неравенств имеет единственное решение.
Очевидно, что если пара чисел подходит в систему, то и пара чисел подходит в систему, поэтому единственным решение может быть только если Далее, из пар вида должна подходить ровно одна (больше одной нельзя по условию, а если не подходит ни одна, то единственного решения не будет), то есть неравенство должно иметь единственное решение.
Перепишем его в виде Тогда трехчлен должен иметь единственный корень (если корней два, то на роль x подойдет любое число между корнями, а если корней нет вовсе, то у неравенства не будет решений). Тогда его дискриминант откуда Осталось убедиться, что система неравенств
имеет только решение Сложив неравенства, получим или Теперь утверждение очевидно.
Ответ:
Спрятать критерииКритерии проверки: За каждый из четырех пунктов сюжета выставляется одна из следующих оценок: + (3 балла), ± (2 балла), ∓ (1 балл), − (0 баллов) Максимум за сюжет 12 баллов. При этом необходимо руководствоваться следующим. |
Критерии оценивания выполнения заданий | Баллы |
Верное и полное выполнение задания | 3 |
Ход решения верный, решение доведено до ответа, но допущен один недочет | 2 |
Ход решения верный, решение доведено до ответа, но допущено два недочета или одна грубая ошибка | 1 |
Остальные случаи | 0 |
К недочетам относятся, например: описки, неточности в использовании математической символики; погрешности на рисунках, недостаточно полные обоснования; неточности в логике рассуждений при сравнении чисел, доказательстве тождеств или неравенств; вычислительные ошибки, не повлиявшие принципиально на ход решения и не упростившие задачу, если задача не являлась вычислительной; замена строго знака неравенства нестрогим или наоборот; неверное присоединение либо исключение граничной точки из промежутка монотонности и аналогичные. Грубыми ошибками являются, например: потеря или приобретение постороннего корня; неверный отбор решения на промежутке при правильном решении в общем виде; вычислительная ошибка в задаче на вычисление; неверное изменение знака неравенства при умножении на отрицательное число, логарифмировании или потенцировании и т. п. |