а) Решите систему
б) Существует ли многочлен имеющий девять различных действительных корней, все коэффициенты ai которого по модулю не превосходят 0,001?
в) Докажите неравенство
а) Неравенство приводится к виду где поскольку Из первого уравнения получаем или Разберем два случая.
Если то или где
При получим и второе уравнение примет вид т. е. или
При получим и второе уравнение примет вид или
Если то или
При получим и второе уравнение примет вид где
При получим и второе уравнение примет вид где
Ответ:
б) Действительно, положим Ясно, что если корни xi достаточно малы, то и коэффициенты многочлена малы. Можно написать явные оценки, но лучше провести следующее рассуждение.
Пусть
Коэффициенты этого многочлена имеют вид Поскольку при то найдется такое натуральное число n, что i = 1, 2, ..., 9.
Ответ: Да, существует.
в) Обозначим Тогда неравенство можно записать в виде
Что верно, поскольку поэтому и