Найдите все значения параметра a, при которых система
а) имеет ровно 3 решения;
б) имеет ровно 2 решения.
Спрятать решениеРешение. Первое уравнение системы не меняется при замене x на x — и/или y на −y. Следовательно, множество точек, задаваемых первым уравнением симметрично относительно обеих осей координат. В первой четверти получаем часть прямой — отрезок, соединяющий точки (3; 0) и (0; 4). Используя симметрию множества относительно координатных осей, получаем ромб с вершинами
Второе уравнение системы может быть записано в виде Оно задаёт окружность с центром радиуса (или точку Q, если При решений нет, так что рассмотрим случай окружности.
а) И ромб, и окружность симметричны относительно оси абсцисс, следовательно, 3 решения возможны только в том случае, когда одна из общих точек окружности и ромба лежит на оси абсцисс. Это происходит, если радиус окружности равен отрезку QA или отрезку QC, т. е. или Несложно видеть, что при система имеет 3 решения, а при решений. Значит, 3 решения возможны только при
б) Пусть — радиус той окружности, которая касается сторон BC и CD, а — радиус той окружности, которая касается сторон AB и AD ромба. Система имеет ровно два решения в том и только том случае, когда
Тогда отсюда Пусть окружность радиуса касается стороны AB в точке J, а окружность радиуса касается стороны BC в точке L. Треугольник CLQ — прямоугольный, равен угловому коэффициенту прямой BC, то есть Тогда
По теореме Пифагора для треугольника CLQ получаем
откуда Поскольку треугольники JQA и LQC подобны и коэффициент подобия равен то
Окончательно получаем
Ответ: а) б)
Спрятать критерииКритерии проверки:Изображено множество точек, удовлетворяющих первому уравнению системы 1 балл.
Показано, что второе уравнение системы задаёт окружность переменного радиуса (или точку) 1 6алл.
Решён пункт а) — 2 балла.
Если указано, что нечётное число решений может быть только когда окружность проходит через вершину ромба, принадлежащую его меньшей диагонали, и при этом получен неверный ответ (лишние решения), то 1 балл вместо 2.
Решён пункт б) — 3 балла.
Отсутствует проверка того, что если окружность проходит через ближайшую вершину ромба, то она не имеет общих точек с двумя дальними сторонами ромба и пр. — баллы не снимать.
Если радиус окружности равен a вместо |a|, то снять 1 балл при условии, что полностью решён хотя бы один из пунктов а) или 6).
Ответ: а)
б)