а) Решите уравнение
б) Найдите множество всех точек плоскости, являющихся серединами отрезков, концы которых лежат на
в) Найдите все такие a, при которых функция нечетная.
г) Найдите все такие b, что при любом a уравнение имеет решение.
а) Перепишем уравнение в виде и преобразуем при условии
Ответ:
б) Точка с координатами является серединой отрезка, концы которого лежат на кривой тогда и только тогда, когда найдутся такие числа a и b, что
Исключая очевидное решение приходим к уравнению которое разрешимо при
Пункт 1б) не обнаружен в файле. Решения нет.
Ответ: на рисунке.
в) При получаем Но если нечетная функция определена при то поэтому либо либо Итак, остается проверить и
При получим
что определено при и не определено при поэтому функция не будет нечетной.
При получим
и
что верно. Осталось еще объяснить, что и определены при одних и тех же x. Ясно, что при всех а при Поскольку произведение этих выражений всегда положительно, то на самом деле оба они всегда одного знака, то есть оба положительны. Значит, логарифмы определены.
Ответ:
г) Изобразим график (см. рис.). Прямые проходят через точку на оси ординат. Поэтому вопрос сводится к такому — какие точки на оси ординат обладают таким свойством — любая невертикальная прямая, проведенная через них, пересекает график Очевидно при можно провести горизонтальную прямую и она не пересечет график, при точка лежит на графике, а при прямые с неотрицательным k пересекают график во второй четверти, а с отрицательным k — в первой четверти (возможно есть и второе пересечение, но это неважно).
Ответ: