а) Докажите, что уравнение имеет два различных действительных корня, если Верно ли обратное утверждение?
б) Решите уравнение
в) Изобразите на плоскости множество всех таких пар действительных чисел, что функция монотонна на всей числовой прямой.
г) Абсциссы двух точек пересечения некоторой прямой с графиком функции равны и Найдите абсциссы остальных точек пересечения.
а) Пусть Так как то значит, парабола, являющаяся графиком функции p, пересечет ось абсцисс в двух разных точках. Обратное утверждение неверно, пример — на рисунке.
б) Из цепочки
следует, что и
Ответ:
в) На рисунке изображено множество пар заданное неравенством так как производная данной функции должна сохранять знак на всей оси.
Ответ: см. рисунок.
г) Абсциссы точек пересечения прямой с графиком функции являются корнями уравнения
следовательно, их сумма равна нулю.
Ответ: