а) Решите неравенство
б) Решите неравенство
в) Докажите, что не существует прямых, касающихся графика функции в двух разных точках.
а)Преобразуем неравенство
Поскольку знак выражения совпадает со знаком выражения можно записать неравенство в виде
Первый множитель положителен при отрицателен при и равен нулю при Второй множитель, представляет собой убывающую функцию ( убывает, x возрастает, равную нулю при поэтому он положителен при и отрицателен при а при он не определен. Нужно, чтобы множители имели одинаковый знак, поэтому ответом будет
Ответ:
б) Обозначим тогда
Поскольку тогда Поделим на него получим или В первое неравенство годятся только x, при которых то есть Неравенство имеет решения
при Окончательно
Ответ:
в) Если бы такая прямая существовала, то ее угловой коэффициент был бы равен значению производной функции в двух различных точках. Поскольку
квадратный трехчлен, его значения одинаковы в точках, симметричных относительно Допустим это точки причем Тогда уравнения касательных будут
и, аналогично, Тогда получим
Поскольку можно разделить на тогда
Значит и должны быть корнями уравнения
Но это уравнение можно записать в виде поэтому у него нет двух различных корней. Кубический многочлен не может делиться
Теорема. Пусть — многочлен и Тогда делится на Действительно, так как то где — многочлен. Продифференцировав это равенство, получаем откуда значит, и
Следствие. Если прямая, заданная уравнением касается графика многочлена в точке то разность делится на
Докажем теперь, что график многочлена четвертой степени имеет не более одной прямой, касающейся его в двух различных точках. Если прямая ( — линейная функция) касается графика в точках с абсциссами и то разность делится на значит,
где — квадратный трехчлен. Пусть — еще одна двойная касательная. Тогда откуда
Если то такое равенство невозможно, поскольку в его правой части находится многочлен по крайней мере второй степени.