сайты - меню - вход - но­во­сти


Задания
Версия для печати и копирования в MS Word

Назовём рас­сто­я­ни­ем между чис­ла­ми мо­дуль их раз­но­сти. Из­вест­но, что сумма рас­сто­я­ний от два­дца­ти по­сле­до­ва­тель­ных на­ту­раль­ных чисел до не­ко­то­ро­го числа a равна 4460, а сумма рас­сто­я­ний от этих же два­дца­ти чисел до числа a2 равна 2755. Най­ди­те все воз­мож­ные зна­че­ния a.

Спрятать решение

Ре­ше­ние.

Обо­зна­чим дан­ные по­сле­до­ва­тель­ные на­ту­раль­ные числа через k, k плюс 1, ..., k плюс 19. За­ме­тим, что если не­ко­то­рое число лежит на от­рез­ке  левая квад­рат­ная скоб­ка k; k плюс 19 пра­вая квад­рат­ная скоб­ка , то сумма рас­сто­я­ний от него до дан­ных два­дца­ти чисел не пре­вос­хо­дит 10 умно­жить на 19=190 (сумма рас­сто­я­ний до двух край­них чисел в точ­но­сти равна 19, сумма рас­сто­я­ний до k плюс 1 и k плюс 18 не пре­вос­хо­дит 19, сумма рас­сто­я­ний до k плюс 2 и k плюс 17 также не пре­вос­хо­дит 19 и т. д.). Сле­до­ва­тель­но, числа a и a в квад­ра­те лежат вне от­рез­ка  левая квад­рат­ная скоб­ка k; k плюс 19 пра­вая квад­рат­ная скоб­ка . Тогда сумма рас­сто­я­ний от числа а до каж­до­го из дан­ных по­сле­до­ва­тель­ных чисел вы­ра­жа­ет­ся фор­му­лой

|20 a минус k минус левая круг­лая скоб­ка k плюс 1 пра­вая круг­лая скоб­ка минус \ldots минус левая круг­лая скоб­ка k плюс 19 пра­вая круг­лая скоб­ка |=|20 a минус 20 k минус 190| .

Ана­ло­гич­но, сумма рас­сто­я­ний от числа a в квад­ра­те до каж­до­го из дан­ных чисел равна \left|20 a в квад­ра­те минус 20 k минус 190| . По­лу­ча­ем си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний | 2 0 a в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка минус 2 0 k минус 1 9 0 | = 2 7 5 5 , | 2 0 a минус 2 0 k минус 1 9 0 | = 4 4 6 0 конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний \left|a в квад­ра­те минус k минус 9,5|=137,75, |a минус k минус 9,5|=223. конец си­сте­мы ...

Рас­смот­рим че­ты­ре слу­чая рас­кры­тия мо­ду­ля.

1)  Оба числа a и a в квад­ра­те лежат спра­ва от от­рез­ка  левая квад­рат­ная скоб­ка k; k плюс 19 пра­вая квад­рат­ная скоб­ка . Тогда

 си­сте­ма вы­ра­же­ний a в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка минус k минус 9 , 5 = 1 3 7 , 7 5 , a минус k минус 9 , 5 = 2 2 3 конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний a минус k минус 9,5=223, a в квад­ра­те минус a плюс 85,25=0. конец си­сте­мы .

Дис­кри­ми­нант квад­рат­но­го урав­не­ния от­ри­ца­те­лен, по­это­му ре­ше­ний нет.

2)  Оба числа a и a в квад­ра­те лежат слева от от­рез­ка  левая квад­рат­ная скоб­ка k; k плюс 19 пра­вая квад­рат­ная скоб­ка . Тогда

 си­сте­ма вы­ра­же­ний k плюс 9 , 5 минус a в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка = 1 3 7 , 7 5 , k плюс 9 , 5 минус a = 2 2 3 конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний k плюс 9 , 5 минус a = 2 2 3 , a в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка минус a минус 8 5 , 2 5 = 0 конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний k=a плюс 213,5, a= дробь: чис­ли­тель: 1 \pm 3 ко­рень из: на­ча­ло ар­гу­мен­та: 38 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби . конец си­сте­мы .

Тогда из пер­во­го урав­не­ния си­сте­мы сле­ду­ет, что k  — ир­ра­ци­о­наль­ное число, что не удо­вле­тво­ря­ет усло­вию за­да­чи.

3)  Число a лежит слева, а a в квад­ра­те минус спра­ва от от­рез­ка  левая квад­рат­ная скоб­ка k; k плюс 19 пра­вая квад­рат­ная скоб­ка . Тогда

 си­сте­ма вы­ра­же­ний a в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка минус k минус 9 , 5 = 1 3 7 , 7 5 , k плюс 9 , 5 минус a = 2 2 3 конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний k плюс 9 , 5 минус a = 2 2 3 , a в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка минус a минус 3 6 0 , 7 5 = 0 конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний k=a плюс 213,5, со­во­куп­ность вы­ра­же­ний a= минус 18,5, a=19,5. конец си­сте­мы . конец со­во­куп­но­сти .

Убеж­да­ем­ся, что при обоих зна­че­ни­ях a число k яв­ля­ет­ся на­ту­раль­ным  левая круг­лая скоб­ка a= минус 18,5, от­сю­да  k=195; a=19,5 от­сю­да k=233 пра­вая круг­лая скоб­ка , сле­до­ва­тель­но, оба зна­че­ния a под­хо­дят.

4)  Число a лежит спра­ва, а a2  — слева от от­рез­ка  левая квад­рат­ная скоб­ка k; k плюс 19 пра­вая квад­рат­ная скоб­ка . Оче­вид­но, этот слу­чай не под­хо­дит, так как если a боль­ше a в квад­ра­те , то оба числа a и a2 лежат на от­рез­ке [0; 1], но тогда между ними не может по­ме­стить­ся ни одно целое число. Итак, воз­мож­ны два слу­чая: a= минус 18,5 и a=19,5.

 

Ответ: a= минус дробь: чис­ли­тель: 37, зна­ме­на­тель: 2 конец дроби , a= дробь: чис­ли­тель: 39, зна­ме­на­тель: 2 конец дроби .

Спрятать критерии
Критерии проверки:

Ука­за­но, что числа a и a в квад­ра­те лежат вне от­рез­ка между дан­ны­ми по­сле­до­ва­тель­ны­ми чис­ла­ми — 1 балл.

По­лу­че­на фор­му­ла суммы рас­сто­я­ний от чисел a и a2 до дан­ных по­сле­до­ва­тель­ных на­ту­раль­ных чисел — 1 балл ИЛИ най­де­ны рас­сто­я­ния от a и a2 до бли­жай­ших по­сле­до­ва­тель­ных чисел — 1 6алл. (Этот балл ста­вит­ся при усло­вии, что вы­пол­нен преды­ду­щий пункт.)

Слу­чай a в квад­ра­те мень­ше k мень­ше \ldots мень­ше k плюс p мень­ше a не разо­бран — баллы не сни­ма­ют­ся.

При на­ли­чии от­бо­ра:

а) рас­смот­рен 1 слу­чай рас­по­ло­же­ния чисел a и a в квад­ра­те (оба числа спра­ва от от­рез­ка; оба слева от от­рез­ка; a в квад­ра­те спра­ва от от­рез­ка, a слева от от­рез­ка) — 1 балл;

б) рас­смот­ре­ны 2 слу­чая рас­по­ло­же­ния чисел a и a2 — 2 6алла;

в) рас­смот­ре­ны 3 слу­чая рас­по­ло­же­ния чисел a и a2 — 4 балла.

При от­сут­ствии от­бо­ра:

а) рас­смот­рен 1 слу­чай рас­по­ло­же­ния чисел a и a в квад­ра­те  — 0 6аллов;

б) рас­смот­ре­ны 2 слу­чая рас­по­ло­же­ния чисел a и a2 — 1 балл;

в) рас­смот­ре­ны 3 слу­чая рас­по­ло­же­ния чисел a и a2 — 2 6алла.

Ко­ли­че­ство сла­га­е­мых в фор­му­ле суммы рас­сто­я­ний от­ли­ча­ет­ся от вер­но­го на 1 — снять 2 балла или с общей суммы.


Аналоги к заданию № 1167: 1174 Все