сайты - меню - вход - но­во­сти


Варианты заданий
Версия для печати и копирования в MS Word
1

Че­ты­рех­уголь­ник ABCD впи­сан в окруж­ность с цен­тром O. Две окруж­но­сти \Omega_1 и \Omega_2 рав­ных ра­ди­у­сов с цен­тра­ми O1 и O2 впи­са­ны в углы ABC и ADC со­от­вет­ствен­но, при этом пер­вая ка­са­ет­ся сто­ро­ны BC в точке K, а вто­рая ка­са­ет­ся сто­ро­ны AD в точке T.

а)  Най­ди­те ра­ди­ус окруж­но­сти \Omega_1, если BK = 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , DT =  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

б)  Пусть до­пол­ни­тель­но из­вест­но, что точка O1 яв­ля­ет­ся цен­тром окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка BOC. Най­ди­те угол BDC.


Аналоги к заданию № 1496: 1502 Все