сайты - меню - вход - но­во­сти


Поиск
?


Скопировать ссылку на результаты поиска
Класс: 10 11 6 7 8 9

Всего: 1000    1–20 | 21–40 | 41–60 | 61–80

Добавить в вариант

В ком­па­нии из 6 че­ло­век не­ко­то­рые ком­па­ни­я­ми по трое хо­ди­ли вме­сте в по­хо­ды. Верно ли, что среди них най­дут­ся чет­ве­ро, среди ко­то­рых каж­дые трое хо­ди­ли вме­сте в поход, либо чет­ве­ро, где ни­ка­кие трое не хо­ди­ли вме­сте в поход?


Па­ра­бо­ла x=y в квад­ра­те пе­ре­се­ка­ет­ся с не­ко­то­рой окруж­но­стью в четырёх точ­ках. До­ка­жи­те, что эти че­ты­ре точки лежат на па­ра­бо­ле, за­да­ва­е­мой урав­не­ни­ем вида y = ax в квад­ра­те плюс bx плюс c.


Трой­ка целых чисел (x, y, z), наи­боль­ший общий де­ли­тель ко­то­рых равен 1, яв­ля­ет­ся ре­ше­ни­ем урав­не­ния

y в квад­ра­те z плюс yz в квад­ра­те = x в кубе плюс x в квад­ра­те z минус 2xz в квад­ра­те .

До­ка­жи­те, что z яв­ля­ет­ся кубом це­ло­го числа.


Внут­ри вы­пук­ло­го четырёхуголь­ни­ка ABCD рас­по­ло­же­ны че­ты­ре окруж­но­сти од­но­го ра­ди­у­са так, что они имеют общую точку и каж­дая из них впи­са­на в один из углов четырёхуголь­ни­ка. До­ка­жи­те, что четырёхуголь­ник ABCD впи­сан­ный.


Числа P1, . . . , Pn яв­ля­ют­ся пе­ре­ста­нов­кой на­бо­ра чисел {1, . . . , n} (то есть каж­дое Pi равно од­но­му из 1, . . . , n, и все Pi раз­лич­ны). До­ка­жи­те не­ра­вен­ство:

\sum пре­де­лы: от i=1 до n минус 1, дробь: чис­ли­тель: 1, зна­ме­на­тель: P_i плюс P_i плюс 1 конец дроби боль­ше дробь: чис­ли­тель: n минус 1, зна­ме­на­тель: n плюс 2 конец дроби .


Сто­ро­на BC пра­виль­но­го тре­уголь­ни­ка ABC раз­де­ле­на на 2016 рав­ных ча­стей точ­ка­ми A1, . . . , A2015, сто­ро­ны AC и AB  — точ­ка­ми B1, . . . , B2015 и C1, . . . , C2015. Тре­уголь­ник AiBjCk на­зы­ва­ет­ся крас­ным, если со­дер­жит центр ABC, и синим иначе. Каких тре­уголь­ни­ков боль­ше, крас­ных или синих?


В ком­па­нии из 6 че­ло­век не­ко­то­рые ком­па­ни­я­ми по трое хо­ди­ли вме­сте в по­хо­ды. Верно ли, что среди них най­дут­ся чет­ве­ро, среди ко­то­рых каж­дые трое хо­ди­ли вме­сте в поход, либо чет­ве­ро, где ни­ка­кие трое не хо­ди­ли вме­сте в поход?


На окруж­но­сти с цен­тром O рас­по­ло­жим шестёрку точек P1, . . . , P6. Назовём шестёрку ин­те­рес­ной, если \overrightarrowOP_1 плюс . . . плюс \overrightarrowOP_6 = 0, и все углы ∠PiOPj целые в гра­ду­сах. Назовём шестёрку скуч­ной, если она пе­ре­во­дит­ся в себя от­ра­же­ни­ем от точки O или по­во­ро­том во­круг O на 120°. Су­ще­ству­ют ли ин­те­рес­ные не­скуч­ные шестёрки точек на окруж­но­сти?


Вы­пук­лый мно­го­гран­ник имеет 8 вер­шин и 6 четырёхуголь­ных гра­ней. Может ли про­ек­ция этого мно­го­гран­ни­ка на не­ко­то­рую плос­кость ока­зать­ся пра­виль­ным 8-уголь­ни­ком?


Трой­ка целых чисел (x, y, z), наи­боль­ший общий де­ли­тель ко­то­рых равен 1, яв­ля­ет­ся ре­ше­ни­ем урав­не­ния

y в квад­ра­те z плюс yz в квад­ра­те = x в кубе плюс x в квад­ра­те z минус 2xz в квад­ра­те .

До­ка­жи­те, что z яв­ля­ет­ся кубом це­ло­го числа.


Числа P1, . . . , Pn яв­ля­ют­ся пе­ре­ста­нов­кой на­бо­ра чисел {1, . . . , n} (то есть каж­дое Pi равно од­но­му из 1, . . . , n, и все Pi раз­лич­ны). До­ка­жи­те не­ра­вен­ство:

\sum пре­де­лы: от i=1 до n минус 1, дробь: чис­ли­тель: 1, зна­ме­на­тель: P_i плюс P_i плюс 1 конец дроби боль­ше дробь: чис­ли­тель: n минус 1, зна­ме­на­тель: n плюс 2 конец дроби .


Вы­со­ты AA1, BB1, CC1 ост­ро­уголь­но­го тре­уголь­ни­ка ABC пе­ре­се­ка­ют­ся в точке H. Пусть M  — се­ре­ди­на сто­ро­ны BC, K  — се­ре­ди­на B1C1. До­ка­жи­те, что окруж­ность, про­хо­дя­щая через K, H и M, ка­са­ет­ся AA1.


Какое ко­ли­че­ство 5%-ого и 20%-ого рас­тво­ров соли в воде нужно взять, чтобы по­лу­чить 90 кг 7%-ого рас­тво­ра?


В дет­ском саду каж­до­му ребёнку вы­да­ли по три кар­точ­ки, на каж­дой из ко­то­рых на­пи­са­но либо «МА», либо «НЯ». Ока­за­лось, что слово «МАМА» из своих кар­то­чек могут сло­жить 20 детей, слово «НЯНЯ»  — 30 детей, а слово «МАНЯ»  — 40 детей. У сколь­ких детей все три кар­точ­ки были оди­на­ко­вы?


По кругу за­пи­са­ны 14 по­ло­жи­тель­ных чисел (не обя­за­тель­но целых). Сумма любых четырёх чисел, сто­я­щих под­ряд, равна 30. До­ка­жи­те, что каж­дое из этих чисел мень­ше 15.


На плос­ко­сти дан от­ре­зок АВ длины 1 и на нём про­из­воль­ная точка М. На от­рез­ках АМ и МВ как на сто­ро­нах по­стро­е­ны квад­ра­ты AMCD и MBEF, ле­жа­щие по одну сто­ро­ну от АВ. Пусть P и Q  — точки пе­ре­се­че­ния диа­го­на­лей этих квад­ра­тов со­от­вет­ствен­но. Най­ди­те гео­мет­ри­че­ское место се­ре­дин от­рез­ков PQ, когда точка М про­бе­га­ет весь от­ре­зок АВ.


Про семь на­ту­раль­ных чисел a, b, c, a плюс b минус c, a плюс c минус b, b плюс c минус a, a плюс b плюс c из­вест­но, что все они  — раз­лич­ные про­стые числа. Найти все зна­че­ния, ко­то­рые может при­ни­мать наи­мень­шее из этих семи чисел.



В пря­мо­уголь­ной тра­пе­ции ABCD сумма длин ос­но­ва­ний AD и BC равна её вы­со­те АВ. В каком от­но­ше­нии делит бо­ко­вую сто­ро­ну CD бис­сек­три­са угла АВС?


Сна­ча­ла ша­ри­ки были раз­ло­же­ны по не­сколь­ким белым и чёрным ко­роб­кам так, что в каж­дой белой было по 31 ша­ри­ку, а в каж­дой чёрной  — по 26 ша­ри­ков. Затем при­нес­ли ещё три ко­роб­ки и раз­ло­жи­ли ша­ри­ки так, что в каж­дой белой ко­роб­ке стало по 21 ша­ри­ку, а в каж­дой чёрной  — по 16 ша­ри­ков. Можно ли при­не­сти ещё не­сколь­ко ко­ро­бок и раз­ло­жить ша­ри­ки так, чтобы в каж­дой белой ко­роб­ке стало по 15 ша­ри­ков, а в каж­дой чёрной  — по 10 ша­ри­ков?

Всего: 1000    1–20 | 21–40 | 41–60 | 61–80