сайты - меню - вход - но­во­сти


Поиск
?


Скопировать ссылку на результаты поиска
Класс: 10 11 9

Всего: 9    1–9

Добавить в вариант

Су­ще­ству­ет ли пря­мо­уголь­ный па­рал­ле­ле­пи­пед, у ко­то­ро­го длины всех ребер ир­ра­ци­о­наль­ны, а объем, пол­ная по­верх­ность и боль­шая диа­го­наль – числа целые? (Пря­мо­уголь­ный па­рал­ле­ле­пи­пед – это фи­гу­ра в про­стран­стве, за­да­ва­е­мая не­ра­вен­ства­ми 0 ≤ xa, 0 ≤ y ≤ b, 0 ≤ zc, где a, b, c > 0 – фик­си­ро­ван­ные числа. Боль­шая диа­го­наль – это мак­си­маль­ное рас­сто­я­ние между вер­ши­на­ми па­рал­ле­ле­пи­пе­да.)


а)  Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 1 плюс тан­генс в квад­ра­те x конец ар­гу­мен­та ко­си­нус x= минус 1.

б)  Най­ди­те мно­же­ство всех точек плос­ко­сти, яв­ля­ю­щих­ся се­ре­ди­на­ми от­рез­ков, концы ко­то­рых лежат на кри­вой y=x в кубе .

в)  Най­ди­те все такие a, при ко­то­рых функ­ция y=\lg левая круг­лая скоб­ка x плюс ко­рень из: на­ча­ло ар­гу­мен­та: a в квад­ра­те плюс x в квад­ра­те конец ар­гу­мен­та пра­вая круг­лая скоб­ка не­чет­ная.

г)  Най­ди­те все такие b, что при любом a урав­не­ние ax плюс b=|x| имеет ре­ше­ние.


а)  На­ри­суй­те гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2x плюс | ло­га­рифм по ос­но­ва­нию 2 x плюс 2x| минус ло­га­рифм по ос­но­ва­нию 2 x.

б)  Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 2 минус ко­си­нус 2x конец ар­гу­мен­та = синус x минус ко­си­нус x.

в)  Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: |1 минус 2x| конец ар­гу­мен­та \geqslant1 плюс ax.

г)  За­ду­мав же­нить­ся, Иван от­крыл счет в банке и решил еже­год­но вно­сить на него 10 000 руб­лей. Сколь­ко денег на се­мей­ный отдых он смо­жет тра­тить через 8 лет, если будет брать толь­ко про­цен­ты с на­коп­лен­ной за это время суммы? Банк дает 30% го­до­вых, а \lg1,\!3=0,\!114.


а)  На­ри­суй­те гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 3 x минус 3x минус | ло­га­рифм по ос­но­ва­нию 3 x плюс 3x|.

б)  Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 2 плюс ко­си­нус 2x конец ар­гу­мен­та = синус x плюс ко­си­нус x.

в)  Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: \left|x минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби | конец ар­гу­мен­та мень­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби плюс ax.

г)  Для того, чтобы обес­пе­чить себя в ста­ро­сти, Джон от­крыл счет в банке и решил еже­год­но вно­сить на него 2,000 $. До­ста­точ­но ли ему ко­пить день­ги 27 лет, чтобы в даль­ней­шем тра­тить по 20,000 $ в год из про­цен­тов, не тро­гая на­коп­лен­ной суммы? Банк дает 10% го­до­вых, а \lg1,\!1=0,\!0414.


а)  Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 8x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 24x конец ар­гу­мен­та \leqslant8.

б)  Най­ди­те все a, при ко­то­рых урав­не­ние  ко­си­нус левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка = ко­си­нус левая круг­лая скоб­ка x плюс a пра­вая круг­лая скоб­ка не имеет ре­ше­ний на от­рез­ке  левая квад­рат­ная скоб­ка 0; 1 пра­вая квад­рат­ная скоб­ка .

в)  Най­ди­те наи­мень­шее рас­сто­я­ние между диа­го­на­лью пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с реб­ра­ми 3, 6, 6 см и не пе­ре­се­ка­ю­щей ее диа­го­на­лью его квад­рат­ной грани.

г)  Най­ди­те наи­боль­шую пло­щадь че­ты­рех­уголь­ни­ка, длины по­сле­до­ва­тель­ных сто­рон ко­то­ро­го равны 1, 2, 3, 2 см.


а)  Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 3x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 48x конец ар­гу­мен­та \geqslant9.

б)  Най­ди­те все a, при ко­то­рых урав­не­ние  ко­си­нус левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка = ко­си­нус левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка имеет ре­ше­ния на от­рез­ке  левая квад­рат­ная скоб­ка 0; a пра­вая квад­рат­ная скоб­ка .

в)  Най­ди­те наи­мень­шее рас­сто­я­ние между диа­го­на­лью пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с реб­ра­ми 4, 2, 4 см и не пе­ре­се­ка­ю­щей ее диа­го­на­лью его квад­рат­ной грани.

г)  Най­ди­те наи­боль­шую пло­щадь че­ты­рех­уголь­ни­ка, длины по­сле­до­ва­тель­ных сто­рон ко­то­ро­го равны 2, 3, 4, 3 см.


При каких зна­че­ни­ях па­ра­мет­ра a урав­не­ние имеет един­ствен­ное ре­ше­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби плюс ко­рень из: на­ча­ло ар­гу­мен­та: x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби конец ар­гу­мен­та конец ар­гу­мен­та плюс x=a ?


Най­ди­те все зна­че­ния па­ра­мет­ра a, при ко­то­рых урав­не­ние

 левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 6x – x в квад­ра­те – 4 конец ар­гу­мен­та плюс a – 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка левая круг­лая скоб­ка a – 2 пра­вая круг­лая скоб­ка x – 3a плюс 4 пра­вая круг­лая скоб­ка = 0

имеет ровно два раз­лич­ных дей­стви­тель­ных корня.

(Р. Али­шев)


Всего: 9    1–9