Всего: 142 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
Найти все решения уравнения:
Можно, действуя прямо в лоб, заменить после преобразований получим: откуда Следовательно,
Можно решать по-другому, заменить квадраты косинусов через косинусы двойного угла, получив затем свернуть сумму первого и третьего слагаемых в удвоенное произведение косинусов, выразить всё через получив уравнение с решениями
Ответ:
Примечание: Во всём решении k, l, m берутся из множества целых чисел.
Критерии оценивания выполнения задания | Баллы |
---|---|
Верное решение. | 7 |
Нахождение значений или . | 4 |
Верное выписывание всех серий решений. | 3 |
Потеря части решений. | 4-5 |
Решение не соответствует ни одному из перечисленных выше критериев. | 0 |
Максимальный балл | 7 |
Примечание: Во всём решении k, l, m берутся из множества целых чисел.
Найдите все корни уравнения лежащие на интервале
Преобразуем:
Замена:
Тогда
Замена:
Уравнение примет вид
Имеется корень и левая часть может быть разложена на множители следующим образом:
(1)
Так как то Следовательно,
При таких z многочлен пятой степени в левой части (1) принимает только отрицательные значения, так как и Поэтому — единственный корень уравнения (1). Далее легко найти, что и
Ответ:
Решить уравнение:
Воспользуемся формулой преобразуем уравнение к виду Сложим в нём первый и третий косинусы: и введём замену Получим уравнение из которого Отсюда находим три серии решений: Отбор корней тут не нужен.
Ответ:
Критерии оценивания выполнения задания | Баллы |
---|---|
Верное решение. | 7 |
Потеря одной серии решений, или их неверное нахождение. | 4 |
Потеря двух серий, или их неверное нахождение. | 2 |
Решение не соответствует ни одному из перечисленных выше критериев. | 0 |
Максимальный балл | 7 |
Докажите, что для всех справедливо неравенство:
Указание: воспользуйтесь выпуклостью вниз графика функции на интервале
Выполним преобразования
По условию Следовательно, числа лежат на интервале Рассмотрим функцию Её вторая производная положительна для всех значит, на этом интервале функция выпукла вниз.
На координатной плоскости отметим точки Левая часть последнего неравенства – сумма ординат точек A и B или, что тоже самое, – удвоенная ордината точки K – середины отрезка AB. Аналогично, правая часть последнего неравенства – удвоенная ордината точки M – середины CD. Поскольку выпукла вниз, весь отрезок AB расположен «выше» отрезка CD, а значит ордината точки K больше ординаты точки M. Неравенство доказано.
Для чисел x, y, z, t из интервала выполняется равенство
Докажите, что сумма некоторых двух из чисел x, y, z, t равна сумме двух остальных.
Введем обозначения Используя формулы
получим равенство
которое преобразуется в равенство Итак, должно выполнятся хотя бы одно из равенств: p = r или q = s. В первом случае имеем
Во втором случае получаем, что
Таким образом, всегда сумма некоторых двух из чисел x, y, z, t равна сумме двух остальных.
Критерии оценивания выполнения задания | Оценка | Баллы |
---|---|---|
Задача решена полностью. | + | 12 |
Решение задачи, содержит верную общую схему решения, в котором отсутствуют некоторые обоснования. ИЛИ Рассмотрены оба возможных случая (p = r и q = s) или представлено альтернативное решение, некоторые обоснования. | ± | 8 |
Решение содержит значительное продвижение в верном направлении. Верно рассмотрен только один из возможных случаев (p = r и q = s). | +/2 | 6 |
Решение незаконченное, но содержит определенное содержательное продвижение в верном направлении. | ∓ | 2 |
Задача не решена, содержательных продвижений нет. | − | 0 |
Задача не решалась. | 0 | 0 |
Решить уравнение
Применяя к левой части уравнения формулу синуса двойного угла, а к правой части формулу преобразования разности косинусов в произведение получаем:
или
Отсюда или
или
Во втором случае, замечая, что
и применяя формулу преобразования суммы синусов в произведение, будем иметь
Так как то
Ответ:
За обоснованное решение — 10 баллов, если получен неверный ответ из-за вычислительной ошибки при верной последовательности всех шагов решения — 6 баллов.
Решить уравнение
Применяя к левой части уравнения формулу синуса двойного угла, а к правой части формулу преобразования суммы синусов в произведение, получим:
или
Отсюда или
или
Во втором случае, применяя формулу преобразования разности косинусов в произведение, будем иметь
Ответ:
Найти все корни уравнения удовлетворяющие условию
Введем тригонометрическую подстановку Тогда
Исходное уравнение превращается в тригонометрическое
Умножим это уравнение на получим Отсюда и, значит,
Решая это уравнение с учетом того, что получаем следующие корни исходного уравнения:
Ответ:
Обоснованно получен верный ответ —10 баллов. Решение верное, но имеются небольшие недочеты непринципиального характера — 7−8 баллов. Получены некоторые вспомогательные утверждения, обеспечивающие продвижение в решении в верном направлении — 3−4 балла. Ответ получен подбором, но при этом выполнена проверка — 1 балл.
Решите уравнение
Данное уравнение равносильно следующему:
Окончательно получаем: и где
Ответ:
Уравнение сведено к совокупности двух тригонометрических уравнений (одно из них элементарное тригонометрическое, а второе имеет вид (или или — 2 балла.
Решено элементарное тригонометрическое уравнение — 1 балл.
Решено второе уравнение совокупности — 2 балла.
Решите уравнение
Данное уравнение равносильно следующему:
Окончательно получаем и где
Ответ:
Уравнение сведено к совокупности двух тригонометрических уравнений (одно из них элементарное тригонометрическое, а второе имеет вид (или или — 2 балла.
Решено элементарное тригонометрическое уравнение — 1 балл.
Решено второе уравнение совокупности — 2 балла.
а) Докажите, что уравнение имеет два различных действительных корня, если Верно ли обратное утверждение?
б) Решите уравнение
в) Изобразите на плоскости множество всех таких пар действительных чисел, что функция монотонна на всей числовой прямой.
г) Абсциссы двух точек пересечения некоторой прямой с графиком функции равны и Найдите абсциссы остальных точек пересечения.
а) Пусть Так как то значит, парабола, являющаяся графиком функции p, пересечет ось абсцисс в двух разных точках. Обратное утверждение неверно, пример — на рисунке.
б) Из цепочки
следует, что и
Ответ:
в) На рисунке изображено множество пар заданное неравенством так как производная данной функции должна сохранять знак на всей оси.
Ответ: см. рисунок.
г) Абсциссы точек пересечения прямой с графиком функции являются корнями уравнения
следовательно, их сумма равна нулю.
Ответ:
За каждый из четырех пунктов сюжета выставляется одна из следующих оценок: + (3 балла), ± (2 балла), ∓ (1 балл), − (0 баллов) Максимум за сюжет 12 баллов. При этом необходимо руководствоваться следующим. | |
Критерии оценивания выполнения заданий | Баллы |
---|---|
Верное и полное выполнение задания | 3 |
Ход решения верный, решение доведено до ответа, но допущен один недочет | 2 |
Ход решения верный, решение доведено до ответа, но допущено два недочета или одна грубая ошибка | 1 |
Остальные случаи | 0 |
К недочетам относятся, например: описки, неточности в использовании математической символики; погрешности на рисунках, недостаточно полные обоснования; неточности в логике рассуждений при сравнении чисел, доказательстве тождеств или неравенств; вычислительные ошибки, не повлиявшие принципиально на ход решения и не упростившие задачу, если задача не являлась вычислительной; замена строго знака неравенства нестрогим или наоборот; неверное присоединение либо исключение граничной точки из промежутка монотонности и аналогичные. Грубыми ошибками являются, например: потеря или приобретение постороннего корня; неверный отбор решения на промежутке при правильном решении в общем виде; вычислительная ошибка в задаче на вычисление; неверное изменение знака неравенства при умножении на отрицательное число, логарифмировании или потенцировании и т. п. |
Решите неравенства:
а)
б)
в) Докажите, что уравнение имеет решения при любых целых k.
а) Сделав замену получим неравенство которое можно решить стандартным методом, однако с некоторой целью построим график функции, заданной формулой (см. рисунок). Ясно, что неравенство выполняется при значит,
Ответ:
б) Замена приводит к неравенству или где
Ответ:
в) Аналогично предыдущим пунктам, сделав замену получим уравнение или Множеством значений при является объединение лучей (см. рис.), которое содержит все целые числа.
За каждый из четырех пунктов сюжета выставляется одна из следующих оценок: + (3 балла), ± (2 балла), ∓ (1 балл), − (0 баллов) Максимум за сюжет 12 баллов. При этом необходимо руководствоваться следующим. | |
Критерии оценивания выполнения заданий | Баллы |
---|---|
Верное и полное выполнение задания | 3 |
Ход решения верный, решение доведено до ответа, но допущен один недочет | 2 |
Ход решения верный, решение доведено до ответа, но допущено два недочета или одна грубая ошибка | 1 |
Остальные случаи | 0 |
К недочетам относятся, например: описки, неточности в использовании математической символики; погрешности на рисунках, недостаточно полные обоснования; неточности в логике рассуждений при сравнении чисел, доказательстве тождеств или неравенств; вычислительные ошибки, не повлиявшие принципиально на ход решения и не упростившие задачу, если задача не являлась вычислительной; замена строго знака неравенства нестрогим или наоборот; неверное присоединение либо исключение граничной точки из промежутка монотонности и аналогичные. Грубыми ошибками являются, например: потеря или приобретение постороннего корня; неверный отбор решения на промежутке при правильном решении в общем виде; вычислительная ошибка в задаче на вычисление; неверное изменение знака неравенства при умножении на отрицательное число, логарифмировании или потенцировании и т. п. |
б) Замена приводит к неравенству или где
а) Докажите, что уравнение имеет два различных действительных корня, если Верно ли обратное утверждение?
б) Решите уравнение
в) Изобразите на плоскости множество всех таких пар действительных чисел, что неравенство верно при всех
г) Существует ли прямая, пересекающая кривую в трех различных точках?
а) Пусть Заметим, что
то есть и имеют разные знаки. Значит, на отрезке есть один корень уравнения а всего корней два (если бы он был один, то график касался бы оси абсцисс и функция не принимала бы значений разных знаков). Обратное утверждение неверно, если, например, оба корня не лежат на этом отрезке, как у трехчлена тогда корнями будут и а
б) Так как то равенство возможно лишь в тех случаях, когда откуда
откуда Поскольку k и l — целые числа, а получаем следующие варианты: или или или, наконец, и
Ответ:
в) Неравенство задает множество пар лежащих в квадрате со сторонами, параллельными биссектрисам координатных углов, имеющем центр в точке с координатами Множество пар лежащих в каждом таком квадрате при является прямоугольником.
Ответ: см. рисунке.
г) Возьмем для примера прямую, проходящую через точки с координатами и (смотрите решение соответствующего пункта варианта 9).
Ответ: да, существует.
За каждый из четырех пунктов сюжета выставляется одна из следующих оценок: + (3 балла), ± (2 балла), ∓ (1 балл), − (0 баллов) Максимум за сюжет 12 баллов. При этом необходимо руководствоваться следующим. | |
Критерии оценивания выполнения заданий | Баллы |
---|---|
Верное и полное выполнение задания | 3 |
Ход решения верный, решение доведено до ответа, но допущен один недочет | 2 |
Ход решения верный, решение доведено до ответа, но допущено два недочета или одна грубая ошибка | 1 |
Остальные случаи | 0 |
К недочетам относятся, например: описки, неточности в использовании математической символики; погрешности на рисунках, недостаточно полные обоснования; неточности в логике рассуждений при сравнении чисел, доказательстве тождеств или неравенств; вычислительные ошибки, не повлиявшие принципиально на ход решения и не упростившие задачу, если задача не являлась вычислительной; замена строго знака неравенства нестрогим или наоборот; неверное присоединение либо исключение граничной точки из промежутка монотонности и аналогичные. Грубыми ошибками являются, например: потеря или приобретение постороннего корня; неверный отбор решения на промежутке при правильном решении в общем виде; вычислительная ошибка в задаче на вычисление; неверное изменение знака неравенства при умножении на отрицательное число, логарифмировании или потенцировании и т. п. |
Решите неравенства:
а)
б)
в) Найдите все такие целые k, что уравнение не имеет решений.
а) Неравенство определено при и при таких x можно домножить его на и возвести потом в квадрат (обе части будут неотрицательны)
Корнями уравнения будут поэтому множеством решения неравенства будут Ясно, что поэтому учитывая условие получим окончательный ответ
Ответ:
б) Найдем область определения неравенства. Требуется выполнение следующих условий: и Последнее условие дает и Вместе с первыми получим область определения
Теперь преобразуем неравенство и сделаем замену тогда и
Неравенство примет вид
С помощью метода интервалов получим ответ Отсюда где Поскольку все такие x входят в ОДЗ неравенства, это и есть окончательный ответ.
Ответ:
в) Преобразуем уравнение
Обозначим тогда уравнение примет вид и нам нужно, чтобы это уравнение не имело корней на промежутке Для этого достаточно, чтобы были положительны значения в концах этого отрезка и при если то есть при
Подставляя получим т. е. где Подставляя получим т. е. где Подставляя получим
Первым двум условиям удовлетворяют При этом для этих условий достаточно. Для прочих k еще нужно выполнение условий поэтому не подходит. Окончательно
Ответ:
За каждый из четырех пунктов сюжета выставляется одна из следующих оценок: + (3 балла), ± (2 балла), ∓ (1 балл), − (0 баллов) Максимум за сюжет 12 баллов. При этом необходимо руководствоваться следующим. | |
Критерии оценивания выполнения заданий | Баллы |
---|---|
Верное и полное выполнение задания | 3 |
Ход решения верный, решение доведено до ответа, но допущен один недочет | 2 |
Ход решения верный, решение доведено до ответа, но допущено два недочета или одна грубая ошибка | 1 |
Остальные случаи | 0 |
К недочетам относятся, например: описки, неточности в использовании математической символики; погрешности на рисунках, недостаточно полные обоснования; неточности в логике рассуждений при сравнении чисел, доказательстве тождеств или неравенств; вычислительные ошибки, не повлиявшие принципиально на ход решения и не упростившие задачу, если задача не являлась вычислительной; замена строго знака неравенства нестрогим или наоборот; неверное присоединение либо исключение граничной точки из промежутка монотонности и аналогичные. Грубыми ошибками являются, например: потеря или приобретение постороннего корня; неверный отбор решения на промежутке при правильном решении в общем виде; вычислительная ошибка в задаче на вычисление; неверное изменение знака неравенства при умножении на отрицательное число, логарифмировании или потенцировании и т. п. |
а) Постройте эскиз графика функции
б) Изобразите на плоскости множество точек для которых при всех x верно неравенство
в) Найдите наибольший радиус круга, лежащего в верхней полуплоскости, касающегося оси абсцисс в начале координат и не имеющего других общих точек с параболой
г) Докажите, что при всех натуральных n.
а) Ясно, что функция определена только при и при условии то есть При таких x преобразуем функцию
Обозначим временно и решим неравенство Метод интервалов дает ответ то есть
Если бы мы строили график то он был бы гиперболой с вертикальной асимптотой и горизонтальной Поскольку
Ответ: см. рис.
б) Перепишем неравенство в виде
Ясно, что принимает все значения от −1 до 1 включительно. Тогда наименьшее значение левой части равно а знак можно выбрать так, чтобы результат был отрицательным. Итак, требуется чтобы И наоборот, выполнения этого неравенства достаточно, чтобы условие выполнялось всегда. Построим график и отметим все точки ниже этого графика.
Ответ: (см. рис.).
в) Обозначим центр этого круга за
Значит либо (это разрешается), либо Это уравнение не имеет корней при имеет корень при и имеет другие корни при Поэтому максимальный радиус круга равен
Ответ:
г) Пусть Если то а при
Осталось заметить, что
За каждый из четырех пунктов сюжета выставляется одна из следующих оценок: + (3 балла), ± (2 балла), ∓ (1 балл), − (0 баллов) Максимум за сюжет 12 баллов. При этом необходимо руководствоваться следующим. | |
Критерии оценивания выполнения заданий | Баллы |
---|---|
Верное и полное выполнение задания | 3 |
Ход решения верный, решение доведено до ответа, но допущен один недочет | 2 |
Ход решения верный, решение доведено до ответа, но допущено два недочета или одна грубая ошибка | 1 |
Остальные случаи | 0 |
К недочетам относятся, например: описки, неточности в использовании математической символики; погрешности на рисунках, недостаточно полные обоснования; неточности в логике рассуждений при сравнении чисел, доказательстве тождеств или неравенств; вычислительные ошибки, не повлиявшие принципиально на ход решения и не упростившие задачу, если задача не являлась вычислительной; замена строго знака неравенства нестрогим или наоборот; неверное присоединение либо исключение граничной точки из промежутка монотонности и аналогичные. Грубыми ошибками являются, например: потеря или приобретение постороннего корня; неверный отбор решения на промежутке при правильном решении в общем виде; вычислительная ошибка в задаче на вычисление; неверное изменение знака неравенства при умножении на отрицательное число, логарифмировании или потенцировании и т. п. |
а) Решите неравенство
б) Решите неравенство
в) Докажите, что не существует прямых, касающихся графика функции в двух разных точках.
а)Преобразуем неравенство
Поскольку знак выражения совпадает со знаком выражения можно записать неравенство в виде
Первый множитель положителен при отрицателен при и равен нулю при Второй множитель, представляет собой убывающую функцию ( убывает, x возрастает, равную нулю при поэтому он положителен при и отрицателен при а при он не определен. Нужно, чтобы множители имели одинаковый знак, поэтому ответом будет
Ответ:
б) Обозначим тогда
Поскольку тогда Поделим на него получим или В первое неравенство годятся только x, при которых то есть Неравенство имеет решения
при Окончательно
Ответ:
в) Если бы такая прямая существовала, то ее угловой коэффициент был бы равен значению производной функции в двух различных точках. Поскольку
квадратный трехчлен, его значения одинаковы в точках, симметричных относительно Допустим это точки причем Тогда уравнения касательных будут
и, аналогично, Тогда получим
Поскольку можно разделить на тогда
Значит и должны быть корнями уравнения
Но это уравнение можно записать в виде поэтому у него нет двух различных корней. Кубический многочлен не может делиться
Теорема. Пусть — многочлен и Тогда делится на Действительно, так как то где — многочлен. Продифференцировав это равенство, получаем откуда значит, и
Следствие. Если прямая, заданная уравнением касается графика многочлена в точке то разность делится на
Докажем теперь, что график многочлена четвертой степени имеет не более одной прямой, касающейся его в двух различных точках. Если прямая ( — линейная функция) касается графика в точках с абсциссами и то разность делится на значит,
где — квадратный трехчлен. Пусть — еще одна двойная касательная. Тогда откуда
Если то такое равенство невозможно, поскольку в его правой части находится многочлен по крайней мере второй степени.
За каждый из четырех пунктов сюжета выставляется одна из следующих оценок: + (3 балла), ± (2 балла), ∓ (1 балл), − (0 баллов) Максимум за сюжет 12 баллов. При этом необходимо руководствоваться следующим. | |
Критерии оценивания выполнения заданий | Баллы |
---|---|
Верное и полное выполнение задания | 3 |
Ход решения верный, решение доведено до ответа, но допущен один недочет | 2 |
Ход решения верный, решение доведено до ответа, но допущено два недочета или одна грубая ошибка | 1 |
Остальные случаи | 0 |
К недочетам относятся, например: описки, неточности в использовании математической символики; погрешности на рисунках, недостаточно полные обоснования; неточности в логике рассуждений при сравнении чисел, доказательстве тождеств или неравенств; вычислительные ошибки, не повлиявшие принципиально на ход решения и не упростившие задачу, если задача не являлась вычислительной; замена строго знака неравенства нестрогим или наоборот; неверное присоединение либо исключение граничной точки из промежутка монотонности и аналогичные. Грубыми ошибками являются, например: потеря или приобретение постороннего корня; неверный отбор решения на промежутке при правильном решении в общем виде; вычислительная ошибка в задаче на вычисление; неверное изменение знака неравенства при умножении на отрицательное число, логарифмировании или потенцировании и т. п. |
a) Решите неравенство
б) Решите неравенство
в) Найдите все прямые, касающиеся графика функции в двух различных точках.
Два первых пункта этой задачи абсолютно стандартны.
а) Решите неравенство
Ответ:
б) После замены и обычных преобразований получаем неравенство значит, (учитывая, что или
Ответ:
в) Решение задачи этого пункта уже не является стандартным. Целесообразно записать
График касается оси абсцисс в точках и (см. рис.), поэтому график данной функции касается прямой в точках с такими же абсциссами. Этот факт очевиден с геометрической точки зрения. Пусть два графика имеют общую касательную. Если добавить к каждой из данных функций одно и то же слагаемое, то новые графики также будут иметь общую касательную. Приведем в нашем случае и формальное доказательство.
Пусть и Имеем: и поэтому
Остается открытым вопрос о единственности такой «двойной» касательной. С геометрической точки зрения все очевидно, достаточно взглянуть на эскиз графика функции g (см. рис.). Для аккуратного доказательства единственности следовало бы использовать выпуклость этого графика, поэтому мы изберем другой, алгебраический, подход.
Поскольку утверждение, которое мы сейчас докажем, имеет общий характер, сформулируем его в виде теоремы.
Теорема. Пусть — многочлен и Тогда делится на
Действительно, так как то где — многочлен. Продифференцировав это равенство, получаем откуда значит, и
Следствие. Если прямая, заданная уравнением касается графика многочлена в точке то разность делится на (Попробуйте доказать это следствие самостоятельно).
Докажем теперь, что график многочлена четвертой степени имеет не более одной прямой, касающейся его в двух различных точках.
Если прямая ( — линейная функция) касается графика в точках с абсциссами и то разность делится на значит,
где — квадратный трехчлен. Пусть — еще одна двойная касательная. Тогда откуда
Если то такое равенство невозможно, поскольку в его правой части находится многочлен по крайней мере второй степени.
За каждый из четырех пунктов сюжета выставляется одна из следующих оценок: + (3 балла), ± (2 балла), ∓ (1 балл), − (0 баллов) Максимум за сюжет 12 баллов. При этом необходимо руководствоваться следующим. | |
Критерии оценивания выполнения заданий | Баллы |
---|---|
Верное и полное выполнение задания | 3 |
Ход решения верный, решение доведено до ответа, но допущен один недочет | 2 |
Ход решения верный, решение доведено до ответа, но допущено два недочета или одна грубая ошибка | 1 |
Остальные случаи | 0 |
К недочетам относятся, например: описки, неточности в использовании математической символики; погрешности на рисунках, недостаточно полные обоснования; неточности в логике рассуждений при сравнении чисел, доказательстве тождеств или неравенств; вычислительные ошибки, не повлиявшие принципиально на ход решения и не упростившие задачу, если задача не являлась вычислительной; замена строго знака неравенства нестрогим или наоборот; неверное присоединение либо исключение граничной точки из промежутка монотонности и аналогичные. Грубыми ошибками являются, например: потеря или приобретение постороннего корня; неверный отбор решения на промежутке при правильном решении в общем виде; вычислительная ошибка в задаче на вычисление; неверное изменение знака неравенства при умножении на отрицательное число, логарифмировании или потенцировании и т. п. |
а) Найдите наименьшее положительное решение уравнения
б) Найдите число решений уравнения
в) Докажите, что уравнение имеет ровно два решения.
г) Найдите наибольшее по абсолютной величине значение выражения при
а) Замена приводит к уравнению откуда Корнями последнего уравнения являются числа 2 и Поскольку функция возрастающая, а то отсюда и следует ответ.
Ответ:
б) Два решения при одно — при (см. рис.).
в) Так как то графики правой и левой частей данного уравнения выглядят так, как показано на рисунке. Строгое доказательство приведено в Дополнении.
Ответ: два корня.
г) Если тогда отсюда
Ответ: 576.
За каждый из четырех пунктов сюжета выставляется одна из следующих оценок: + (3 балла), ± (2 балла), ∓ (1 балл), − (0 баллов) Максимум за сюжет 12 баллов. При этом необходимо руководствоваться следующим. | |
Критерии оценивания выполнения заданий | Баллы |
---|---|
Верное и полное выполнение задания | 3 |
Ход решения верный, решение доведено до ответа, но допущен один недочет | 2 |
Ход решения верный, решение доведено до ответа, но допущено два недочета или одна грубая ошибка | 1 |
Остальные случаи | 0 |
К недочетам относятся, например: описки, неточности в использовании математической символики; погрешности на рисунках, недостаточно полные обоснования; неточности в логике рассуждений при сравнении чисел, доказательстве тождеств или неравенств; вычислительные ошибки, не повлиявшие принципиально на ход решения и не упростившие задачу, если задача не являлась вычислительной; замена строго знака неравенства нестрогим или наоборот; неверное присоединение либо исключение граничной точки из промежутка монотонности и аналогичные. Грубыми ошибками являются, например: потеря или приобретение постороннего корня; неверный отбор решения на промежутке при правильном решении в общем виде; вычислительная ошибка в задаче на вычисление; неверное изменение знака неравенства при умножении на отрицательное число, логарифмировании или потенцировании и т. п. |
а) Найдите наименьшее положительное решение уравнения
б) Найдите число решений уравнения
в) Докажите, что уравнение имеет ровно два решения.
г) Докажите, что выражение принимает любое действительное значение тогда и только тогда, когда только одно из чисел a, b лежит между c и d.
а) Обозначим тогда
и Уравнение примет вид
У многочлена в левой части есть корень поэтому многочлен в левой части раскладывается на множители, один из которых равен Выделим его Значит, либо либо
Ясно, что каждое свое положительное значение впервые при положительном x принимает на
что очевидно, на самом деле Значит, наименьший положительный корень уравнения
Ответ:
б) Запишем уравнение в виде и изобразим графики обеих частей.
Правая часть дает график, похожий на только отраженный относительно вертикальной оси, сдвинутый вправо на 5 и вниз на −2.
Левая часть дает прямую, проходящую через начало координат. При очевидно есть одна общая точка, как и при
При уменьшение a поворачивает прямую вокруг начала координат. При будет два корня — один при отрицательных x, второй при положительных.
При дальнейшем уменьшении a отрицательный корень будет всегда, а положительный исчезнет после того, как прямая пройдет через начальную точку графика и Это случится когда или
Итак, получаем ответ. При
Ответ: два решения при одно — при
в) Перепишем уравнение в виде Заметим, что при левая часть равна
при левая часть равна
при левая часть равна Отсюда по непрерывности
Докажем, что корней не больше двух. Как известно, между двумя корнями непрерывно дифференцируемой функции всегда есть корень ее производной (это следствие теоремы Ролля), поэтому если корней больше двух, то у производной больше одного корня. Но производная равна
Итак, требуется найти условие, при котором для любого числа α существует решение квадратного уравнения
или
(случай следует рассмотреть отдельно). Преобразуем дискриминант этого квадратного уравнения:
Положим для краткости
и
Тогда
и
Квадратное уравнение (относительно x) имеет решение тогда и только тогда, когда при всех α верно неравенство для чего необходимо и достаточно, чтобы дискриминант квадратичного относительно α выражения был не положителен. Проделанные вычисления показывают, что последний дискриминант равен
Для завершения доказательства осталось проверить, что неравенство
имеет место, когда одно из чисел a, b лежит между c и d.
г) Будем считать, что По условию, уравнение должно быть разрешимо для любого k. Преобразуем это уравнение получим
При уравнение сводится к то есть к Это уравнение имеет корни всегда, кроме возможно случая, когда что невозможно, если ровно одно из чисел a и b лежит между c и d (например, если то аналогично разбираются и другие варианты), а мы ниже установим, что это условие выполнено.
При прочих k получаем квадратное уравнение
Его дискриминант должен быть неотрицателен. Вычислим его:
Для того, чтобы это выражение было всегда неотрицательно (теоретически кроме но если квадратный трехчлен неотрицателен везде, кроме одной точки, то он неотрицателен и в ней), необходимо и достаточно чтобы старший коэффициент этого квадратного трехчлена от k был положителен (это так) и его дискриминант был не положителен. Вычислим его:
Равенство нулю невозможно, поскольку a, b, c, d различны. Значит, на самом деле это выражение меньше нуля, откуда и имеют различные знаки. Но выражение отрицательно при и отрицательно при и значит, одно из чисел a и b лежит между c и d, а другое не лежит.
Обратно. Пусть числа расположены именно так. Тогда поэтому дискриминант трехчлена
не положителен, поэтому его значения всегда неотрицательны и трехчлен
всегда имеет корни, кроме того при уравнение разрешимо. Значит, функция действительно принимает все значения.
За каждый из четырех пунктов сюжета выставляется одна из следующих оценок: + (3 балла), ± (2 балла), ∓ (1 балл), − (0 баллов) Максимум за сюжет 12 баллов. При этом необходимо руководствоваться следующим. | |
Критерии оценивания выполнения заданий | Баллы |
---|---|
Верное и полное выполнение задания | 3 |
Ход решения верный, решение доведено до ответа, но допущен один недочет | 2 |
Ход решения верный, решение доведено до ответа, но допущено два недочета или одна грубая ошибка | 1 |
Остальные случаи | 0 |
К недочетам относятся, например: описки, неточности в использовании математической символики; погрешности на рисунках, недостаточно полные обоснования; неточности в логике рассуждений при сравнении чисел, доказательстве тождеств или неравенств; вычислительные ошибки, не повлиявшие принципиально на ход решения и не упростившие задачу, если задача не являлась вычислительной; замена строго знака неравенства нестрогим или наоборот; неверное присоединение либо исключение граничной точки из промежутка монотонности и аналогичные. Грубыми ошибками являются, например: потеря или приобретение постороннего корня; неверный отбор решения на промежутке при правильном решении в общем виде; вычислительная ошибка в задаче на вычисление; неверное изменение знака неравенства при умножении на отрицательное число, логарифмировании или потенцировании и т. п. |
а) Решите неравенство
б) Верно ли, что при всех справедливо неравенство
в) Изобразите на координатной плоскости множество всех точек таких что уравнение
а) Ответ:
б) Данное неравенство можно, к примеру, преобразовать к виду
Осталось решить неравенство
Ответ: Да, верно.
в) Действительно, поскольку график функции есть верхняя половина гиперболы, то при прямая пересекается с этим графиком тогда и только тогда, когда Если же то они пересекаются при
Ответ: или
За каждый из четырех пунктов сюжета выставляется одна из следующих оценок: + (3 балла), ± (2 балла), ∓ (1 балл), − (0 баллов) Максимум за сюжет 12 баллов. При этом необходимо руководствоваться следующим. | |
Критерии оценивания выполнения заданий | Баллы |
---|---|
Верное и полное выполнение задания | 3 |
Ход решения верный, решение доведено до ответа, но допущен один недочет | 2 |
Ход решения верный, решение доведено до ответа, но допущено два недочета или одна грубая ошибка | 1 |
Остальные случаи | 0 |
К недочетам относятся, например: описки, неточности в использовании математической символики; погрешности на рисунках, недостаточно полные обоснования; неточности в логике рассуждений при сравнении чисел, доказательстве тождеств или неравенств; вычислительные ошибки, не повлиявшие принципиально на ход решения и не упростившие задачу, если задача не являлась вычислительной; замена строго знака неравенства нестрогим или наоборот; неверное присоединение либо исключение граничной точки из промежутка монотонности и аналогичные. Грубыми ошибками являются, например: потеря или приобретение постороннего корня; неверный отбор решения на промежутке при правильном решении в общем виде; вычислительная ошибка в задаче на вычисление; неверное изменение знака неравенства при умножении на отрицательное число, логарифмировании или потенцировании и т. п. |
Наверх