Всего: 1000 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
Функция f (x), определённая при всех действительных x, является чётной. Кроме того, при любом действительном x выполняется равенство
а) Приведите пример такой функции, отличной от константы.
б) Докажите, что любая такая функция является периодической.
Функция f (x), определённая при всех действительных x, является чётной. Кроме того, при любом действительном x выполняется равенство
а) Приведите пример такой функции, отличной от константы.
б) Докажите, что любая такая функция является периодической.
Бухгалтеры, менеджеры и экономисты банка сидят за круглым столом. Когда директор попросил поднять руку бухгалтеров, рядом с которыми сидит экономист, руку подняли 20 человек. А когда директор попросил поднять руку менеджеров, рядом с которыми сидит экономист, руку подняли 25 человек. Докажите, что рядом с кем-то из поднимавших руку сидит сразу два экономиста.
Болельщики Спартака говорят правду, когда Спартак выигрывает, и лгут, когда он проигрывает. Аналогично ведут себя болельщики Динамо, Зенита и Локомотива. После двух матчей с участием этих четырех команд, каждая из которых закончилась победой одной из команд, а не ничьей, из болельщиков, смотревших трансляцию, на вопрос "болеете ли вы за Спартак?" положительно ответили 200 человек, на вопрос "болеете ли вы за Динамо?" положительно ответили 300 человек, на вопрос "болеете ли вы за Зенит?" положительно ответили 500 человек, на вопрос "болеете ли вы за Локомотив?" положительно ответили 600 человек. Сколько человек болело за каждую из команд?
Слова языка роботов планеты Шелезяка — последовательности стрелочек «вверх», «вниз», «влево» и «вправо», причём две противонаправленные стрелочки не могут стоять рядом. Учитель написал на доске 1000000 слов этого языка. Четыре ученика переписывают слова к себе в тетрадь, делая следующие изменения: ученик U приписывает перед словом стрелочку вверх, а если это запрещено (слово начинается с «вниз»), то убирает это первое «вниз», ученики D, L, R делают всё то же самое, только приписывают соответственно стрелку вниз, влево или вправо, и вычёркивают первый символ, если он оказался «вверх», «вправо», «влево». Докажите, что в одной из четырёх тетрадей минимум половина (500 000) слов не будет встречаться среди слов на доске.
Дан куб, каждая грань которого – это клетчатое поле размером 2015 на 2015 клеток. В центре одной из граней стоит пешка. Данил и Максим передвигают пешку по клеткам куба. Данил может ходить только на соседнюю по стороне клетку (разрешается переходить на другую грань, если клетки соседние по стороне), а Максим может поставить пешку в любую клетку. Пешка красит за собой клетки. На закрашенную клетку пешку двигать нельзя. Изначальная клетка (центр грани) закрашена. Данил ходит первым. Проигрывает тот, кто не может сделать ход. Кто выиграет при правильной игре обоих?
В гномьем клане некоторые знакомы между собой. Каждый гном владеет некоторым количеством монет. Днём каждый гном узнаёт, сколько монет у каждого из его знакомых. Вечером он отдаёт по монете каждому из знакомых, кто днём был богаче него. Гном не может отдать больше, чем у него есть (например, нищий гном ничего не отдаёт). Если у гнома днём было меньше монет, чем количество знакомых богаче, чем он, то он сам решает, кому отдавать монеты. Докажите, что, начиная с какого-то дня, гномы прекратят передавать друг другу монеты.
Слова языка роботов планеты Шелезяка — последовательности стрелочек «вверх», «вниз», «влево» и «вправо», причём две противонаправленные стрелочки не могут стоять рядом. Учитель написал на доске 1000000 слов этого языка. Четыре ученика переписывают слова к себе в тетрадь, делая следующие изменения: ученик U приписывает перед словом стрелочку вверх, а если это запрещено (слово начинается с «вниз»), то убирает это первое «вниз», ученики D, L, R делают всё то же самое, только приписывают соответственно стрелку вниз, влево или вправо, и вычёркивают первый символ, если он оказался «вверх», «вправо», «влево». Докажите, что в одной из четырёх тетрадей минимум половина (500 000) слов не будет встречаться среди слов на доске.
Лыжник спускается с вершины горы к её подножию за 10 минут, а сноубордист — за 5 минут. Спустившись, они тут же поднимаются вверх на подъёмнике, а затем сразу же спускаются вновь. В 12:00 они одновременно начали спуск с вершины. Впервые они встретились у подножия в 14:10. Определите время подъёма от подножия до вершины.
В пунктах A и B находится по автомобилю. Каждую минуту эти два автомобиля одновременно переезжают в какой-либо соседний пункт (пункты, соединённые отрезками, называют соседними). Докажите, что автомобили никогда не окажутся одновременно в одном пункте.
Код сейфа состоит из пяти идущих подряд цифр. Василий Петрович положил деньги в сейф, а когда захотел их забрать, выяснилось, что он забыл код. Он только помнил, что в коде были числа 21 и 16. Какое наименьшее количество пятизначных номеров необходимо перебрать, чтобы наверняка открыть сейф?