сайты - меню - вход - но­во­сти


Поиск
?


Скопировать ссылку на результаты поиска
Класс: 10 11 9

Всего: 26    1–20 | 21–26

Добавить в вариант

Из­вест­но, что для лю­бо­го на­ту­раль­но­го числа n верна фор­му­ла:

 ко­си­нус левая круг­лая скоб­ка na пра­вая круг­лая скоб­ка =2 в сте­пе­ни левая круг­лая скоб­ка n минус 1 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка ко­си­нус a пра­вая круг­лая скоб­ка в сте­пе­ни n плюс a_n минус 1 умно­жить на левая круг­лая скоб­ка ко­си­нус a пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка n минус 1 пра­вая круг­лая скоб­ка плюс a_n минус 2 умно­жить на левая круг­лая скоб­ка ко­си­нус a пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка n минус 2 пра­вая круг­лая скоб­ка плюс ... плюс a_1 умно­жить на левая круг­лая скоб­ка ко­си­нус a пра­вая круг­лая скоб­ка плюс a_0.

Здесь ak  — целые числа, и a_0=0 при не­чет­ном n. До­ка­жи­те, что при n боль­ше или равно 4 числа  ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: n конец дроби пра­вая круг­лая скоб­ка и  синус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: n конец дроби пра­вая круг­лая скоб­ка ир­ра­ци­о­наль­ны.



а)  Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 1 плюс тан­генс в квад­ра­те x конец ар­гу­мен­та ко­си­нус x= минус 1.

б)  Най­ди­те мно­же­ство всех точек плос­ко­сти, яв­ля­ю­щих­ся се­ре­ди­на­ми от­рез­ков, концы ко­то­рых лежат на кри­вой y=x в кубе .

в)  Най­ди­те все такие a, при ко­то­рых функ­ция y=\lg левая круг­лая скоб­ка x плюс ко­рень из: на­ча­ло ар­гу­мен­та: a в квад­ра­те плюс x в квад­ра­те конец ар­гу­мен­та пра­вая круг­лая скоб­ка не­чет­ная.

г)  Най­ди­те все такие b, что при любом a урав­не­ние ax плюс b=|x| имеет ре­ше­ние.


а)  Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 3 минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 8 минус 6 ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та конец ар­гу­мен­та =1.

б)  Числа p, q при­над­ле­жит левая квад­рат­ная скоб­ка 0; 1 пра­вая квад­рат­ная скоб­ка вы­би­ра­ют­ся слу­чай­ным об­ра­зом. Най­ди­те ве­ро­ят­ность того, что мно­го­член x в квад­ра­те плюс px плюс q имеет дей­стви­тель­ные корни.

в)  До­ка­жи­те, что если не су­ще­ству­ет тре­уголь­ни­ка с дли­на­ми сто­рон a, b, c, то нет и тре­уголь­ни­ка со сто­ро­на­ми an, bn, cn (n  — на­ту­раль­ное).

г)  До­ка­жи­те, что тре­уголь­ник ABC яв­ля­ет­ся пря­мо­уголь­ным тогда и толь­ко тогда, когда  ко­си­нус в квад­ра­те A плюс ко­си­нус в квад­ра­те B плюс ко­си­нус в квад­ра­те C=1.


Тип 27 № 1008
i

а)  Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 2 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 10 минус 6 ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та конец ар­гу­мен­та =2.

б)  Числа p, q при­над­ле­жит левая квад­рат­ная скоб­ка минус 1; 1 пра­вая квад­рат­ная скоб­ка вы­би­ра­ют­ся слу­чай­ным об­ра­зом. Най­ди­те ве­ро­ят­ность того, что мно­го­член px в квад­ра­те плюс qx минус 1 имеет дей­стви­тель­ные корни.

в)  До­ка­жи­те, что если a, b, c  — длины сто­рон не­ко­то­ро­го тре­уголь­ни­ка, то из от­рез­ков дли­ной \root n\of a, \root n\of b, \root n\of c также можно со­ста­вить тре­уголь­ник.

г)  Дан тре­уголь­ник ABC. До­ка­жи­те, что если  дробь: чис­ли­тель: синус в квад­ра­те A, зна­ме­на­тель: синус в квад­ра­те B конец дроби = дробь: чис­ли­тель: тан­генс A, зна­ме­на­тель: тан­генс B конец дроби , то он либо рав­но­бед­рен­ный, либо пря­мо­уголь­ный.


а)  На­ри­суй­те гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2x плюс | ло­га­рифм по ос­но­ва­нию 2 x плюс 2x| минус ло­га­рифм по ос­но­ва­нию 2 x.

б)  Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 2 минус ко­си­нус 2x конец ар­гу­мен­та = синус x минус ко­си­нус x.

в)  Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: |1 минус 2x| конец ар­гу­мен­та \geqslant1 плюс ax.

г)  За­ду­мав же­нить­ся, Иван от­крыл счет в банке и решил еже­год­но вно­сить на него 10 000 руб­лей. Сколь­ко денег на се­мей­ный отдых он смо­жет тра­тить через 8 лет, если будет брать толь­ко про­цен­ты с на­коп­лен­ной за это время суммы? Банк дает 30% го­до­вых, а \lg1,\!3=0,\!114.


а)  На­ри­суй­те гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 3 x минус 3x минус | ло­га­рифм по ос­но­ва­нию 3 x плюс 3x|.

б)  Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 2 плюс ко­си­нус 2x конец ар­гу­мен­та = синус x плюс ко­си­нус x.

в)  Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: \left|x минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби | конец ар­гу­мен­та мень­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби плюс ax.

г)  Для того, чтобы обес­пе­чить себя в ста­ро­сти, Джон от­крыл счет в банке и решил еже­год­но вно­сить на него 2,000 $. До­ста­точ­но ли ему ко­пить день­ги 27 лет, чтобы в даль­ней­шем тра­тить по 20,000 $ в год из про­цен­тов, не тро­гая на­коп­лен­ной суммы? Банк дает 10% го­до­вых, а \lg1,\!1=0,\!0414.


а)  Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 8x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 24x конец ар­гу­мен­та \leqslant8.

б)  Най­ди­те все a, при ко­то­рых урав­не­ние  ко­си­нус левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка = ко­си­нус левая круг­лая скоб­ка x плюс a пра­вая круг­лая скоб­ка не имеет ре­ше­ний на от­рез­ке  левая квад­рат­ная скоб­ка 0; 1 пра­вая квад­рат­ная скоб­ка .

в)  Най­ди­те наи­мень­шее рас­сто­я­ние между диа­го­на­лью пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с реб­ра­ми 3, 6, 6 см и не пе­ре­се­ка­ю­щей ее диа­го­на­лью его квад­рат­ной грани.

г)  Най­ди­те наи­боль­шую пло­щадь че­ты­рех­уголь­ни­ка, длины по­сле­до­ва­тель­ных сто­рон ко­то­ро­го равны 1, 2, 3, 2 см.


а)  Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 3x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 48x конец ар­гу­мен­та \geqslant9.

б)  Най­ди­те все a, при ко­то­рых урав­не­ние  ко­си­нус левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка = ко­си­нус левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка имеет ре­ше­ния на от­рез­ке  левая квад­рат­ная скоб­ка 0; a пра­вая квад­рат­ная скоб­ка .

в)  Най­ди­те наи­мень­шее рас­сто­я­ние между диа­го­на­лью пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с реб­ра­ми 4, 2, 4 см и не пе­ре­се­ка­ю­щей ее диа­го­на­лью его квад­рат­ной грани.

г)  Най­ди­те наи­боль­шую пло­щадь че­ты­рех­уголь­ни­ка, длины по­сле­до­ва­тель­ных сто­рон ко­то­ро­го равны 2, 3, 4, 3 см.




Аналоги к заданию № 2857: 2857 2857 Все



Аналоги к заданию № 2867: 2928 Все



Аналоги к заданию № 2867: 2928 Все



Аналоги к заданию № 3014: 3116 Все



Аналоги к заданию № 3014: 3116 Все



Аналоги к заданию № 3265: 3282 Все



Аналоги к заданию № 3265: 3282 Все



Аналоги к заданию № 3327: 3354 Все



Аналоги к заданию № 3327: 3354 Все


Всего: 26    1–20 | 21–26