сайты - меню - вход - но­во­сти


Поиск
?


Скопировать ссылку на результаты поиска
Класс: 10 11 6 7 8 9

Всего: 1000    1–20 | 21–40 | 41–60 | 61–80

Добавить в вариант

Из го­ря­че­го крана ванна за­пол­ня­ет­ся за 17 минут, а из хо­лод­но­го  — за 11 минут. Через сколь­ко минут после от­кры­тия го­ря­че­го крана нужно от­крыть хо­лод­ный, чтобы к мо­мен­ту на­пол­не­ния ванны го­ря­чей воды в ней было на треть боль­ше, чем хо­лод­ной?


Можно ли пред­ста­вить число 99...99 (всего 9 де­вя­ток) в виде суммы двух на­ту­раль­ных чисел, суммы цифр ко­то­рых оди­на­ко­вы?


Найти ми­ни­маль­ное на­ту­раль­ное число n такое, что в любом мно­же­стве из n раз­лич­ных на­ту­раль­ных чисел, не пре­вос­хо­дя­щих 1000, все­гда можно вы­брать два числа, боль­шее из ко­то­рых не де­лит­ся на­це­ло на мень­шее.


Через точки ка­са­ния впи­сан­ной окруж­но­сти со сто­ро­на­ми тре­уголь­ни­ка про­ве­ли пря­мые, со­от­вет­ствен­но па­рал­лель­ные бис­сек­три­сам про­ти­во­по­лож­ных углов. До­ка­жи­те, что эти пря­мые пе­ре­се­ка­ют­ся в одной точке.


В каж­дой клет­ке таб­ли­цы 10 на 10 за­пи­сан минус. За одну опе­ра­цию раз­ре­ша­ет­ся од­но­вре­мен­но ме­нять на про­ти­во­по­лож­ные знаки во всех клет­ках не­ко­то­ро­го столб­ца и не­ко­то­рой стро­ки (плюс на минус и на­о­бо­рот). За какое ми­ни­маль­ное ко­ли­че­ство опе­ра­ций можно до­бить­ся того, что все знаки в таб­ли­це ста­нут плю­са­ми?


Дан куб, каж­дая грань ко­то­ро­го – это клет­ча­тое поле раз­ме­ром 2015 на 2015 кле­ток. В цен­тре одной из гра­ней стоит пешка. Данил и Мак­сим пе­ре­дви­га­ют пешку по клет­кам куба. Данил может хо­дить толь­ко на со­сед­нюю по сто­ро­не клет­ку (раз­ре­ша­ет­ся пе­ре­хо­дить на дру­гую грань, если клет­ки со­сед­ние по сто­ро­не), а Мак­сим может по­ста­вить пешку в любую клет­ку. Пешка кра­сит за собой клет­ки. На за­кра­шен­ную клет­ку пешку дви­гать нель­зя. Из­на­чаль­ная клет­ка (центр грани) за­кра­ше­на. Данил ходит пер­вым. Про­иг­ры­ва­ет тот, кто не может сде­лать ход. Кто вы­иг­ра­ет при пра­виль­ной игре обоих?


Дан тре­уголь­ник ABC, точки A1, B1, C1  — се­ре­ди­ны сто­рон BC, AC, AB со­от­вет­ствен­но. До­ка­жи­те, что три пря­мые, про­хо­дя­щие через эти точки и па­рал­лель­ные бис­сек­три­сам про­ти­во­ле­жа­щих углов, пе­ре­се­ка­ют­ся в одной точке.


В гномьем клане не­ко­то­рые зна­ко­мы между собой. Каж­дый гном вла­де­ет не­ко­то­рым ко­ли­че­ством монет. Днём каж­дый гном узнаёт, сколь­ко монет у каж­до­го из его зна­ко­мых. Ве­че­ром он отдаёт по мо­не­те каж­до­му из зна­ко­мых, кто днём был бо­га­че него. Гном не может от­дать боль­ше, чем у него есть (на­при­мер, нищий гном ни­че­го не отдаёт). Если у гнома днём было мень­ше монет, чем ко­ли­че­ство зна­ко­мых бо­га­че, чем он, то он сам ре­ша­ет, кому от­да­вать мо­не­ты. До­ка­жи­те, что, на­чи­ная с ка­ко­го-то дня, гномы пре­кра­тят пе­ре­да­вать друг другу мо­не­ты.


На доске на­пи­са­ны числа 1, дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби , дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби , дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби , ..., дробь: чис­ли­тель: 1, зна­ме­на­тель: 100 конец дроби . Раз­ре­ша­ет­ся сте­реть любые два числа a, b и на­пи­сать вме­сто них ab + a + b, затем по­сту­пить так же с ка­ки­ми-то двумя из остав­ших­ся, и так далее. Какое число может остать­ся по­след­ним?


На сколь­ко ча­стей могут де­лить плос­кость 7 раз­лич­ных ка­са­тель­ных к дан­ной окруж­но­сти? При­ве­ди­те при­ме­ры для всех от­ве­тов и до­ка­жи­те, что дру­гих не су­ще­ству­ет.


Слова языка ро­бо­тов пла­не­ты Ше­ле­зя­ка  — по­сле­до­ва­тель­но­сти стре­ло­чек «вверх», «вниз», «влево» и «впра­во», причём две про­ти­во­на­прав­лен­ные стре­лоч­ки не могут сто­ять рядом. Учи­тель на­пи­сал на доске 1000000 слов этого языка. Че­ты­ре уче­ни­ка пе­ре­пи­сы­ва­ют слова к себе в тет­радь, делая сле­ду­ю­щие из­ме­не­ния: уче­ник U при­пи­сы­ва­ет перед сло­вом стре­лоч­ку вверх, а если это за­пре­ще­но (слово на­чи­на­ет­ся с «вниз»), то уби­ра­ет это пер­вое «вниз», уче­ни­ки D, L, R де­ла­ют всё то же самое, толь­ко при­пи­сы­ва­ют со­от­вет­ствен­но стрел­ку вниз, влево или впра­во, и вычёрки­ва­ют пер­вый сим­вол, если он ока­зал­ся «вверх», «впра­во», «влево». До­ка­жи­те, что в одной из четырёх тет­ра­дей ми­ни­мум по­ло­ви­на (500 000) слов не будет встре­чать­ся среди слов на доске.


Лыж­ник спус­ка­ет­ся с вер­ши­ны горы к её под­но­жию за 10 минут, а сно­убор­дист  — за 5 минут. Спу­стив­шись, они тут же под­ни­ма­ют­ся вверх на подъёмнике, а затем сразу же спус­ка­ют­ся вновь. В 12:00 они од­но­вре­мен­но на­ча­ли спуск с вер­ши­ны. Впер­вые они встре­ти­лись у под­но­жия в 14:10. Опре­де­ли­те время подъёма от под­но­жия до вер­ши­ны.


Аналоги к заданию № 62: 105 Все



Аналоги к заданию № 63: 106 Все


Най­ди­те на­ту­раль­ное число n, бли­жай­шее к 1022, сумма всех де­ли­те­лей ко­то­ро­го (вклю­чая 1 и само это число) равна 2n минус 1.


В пунк­тах A и B на­хо­дит­ся по ав­то­мо­би­лю. Каж­дую ми­ну­ту эти два ав­то­мо­би­ля од­но­вре­мен­но пе­ре­ез­жа­ют в какой-либо со­сед­ний пункт (пунк­ты, со­единённые от­рез­ка­ми, на­зы­ва­ют со­сед­ни­ми). До­ка­жи­те, что ав­то­мо­би­ли ни­ко­гда не ока­жут­ся од­но­вре­мен­но в одном пунк­те.


Из­вест­но, что сумма цифр числа А равна 59, а сумма цифр числа В равна 77. Какую ми­ни­маль­ную сумму цифр может иметь число А плюс В?


На ост­ро­ве про­жи­ва­ют 20 че­ло­век, часть из них ры­ца­ри, ко­то­рые все­гда го­во­рят прав­ду, а осталь­ные  — лжецы, ко­то­рые все­гда лгут. Каж­дый ост­ро­ви­тя­нин точно знает, кто из осталь­ных ры­царь, а кто  — лжец. На во­прос при­ез­же­го, сколь­ко ры­ца­рей про­жи­ва­ют на ост­ро­ве, пер­вый из ост­ро­ви­тян от­ве­тил: «Ни од­но­го», вто­рой: «Не более од­но­го», тре­тий: «Не более двух», четвѐртый: «Не более трёх» и т. д., два­дца­тый за­явил: «Не более де­вят­на­дца­ти». Так сколь­ко же ры­ца­рей про­жи­ва­ют на ост­ро­ве?


Найти ве­ли­чи­ну вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y плюс z конец дроби плюс дробь: чис­ли­тель: y, зна­ме­на­тель: x плюс z конец дроби плюс дробь: чис­ли­тель: z, зна­ме­на­тель: x плюс y конец дроби , если из­вест­но, что  дробь: чис­ли­тель: 1, зна­ме­на­тель: y плюс z конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: x плюс z конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: x плюс y конец дроби =5 и x плюс y плюс z=2.


В пря­мо­уголь­ном тре­уголь­ни­ке АВС от­ме­че­ны: точка К  — се­ре­ди­на ги­по­те­ну­зы АВ и на ка­те­те ВС точка М такая, что ВМ : МС = 2. Пусть от­рез­ки АМ и СК пе­ре­се­ка­ют­ся в точке Р. До­ка­жи­те, что пря­мая КМ ка­са­ет­ся опи­сан­ной окруж­но­сти тре­уголь­ни­ка АКР.


Най­ди­те наи­мень­шее от­лич­ное от пол­но­го квад­ра­та на­ту­раль­ное число N такое, что де­ся­тич­ная за­пись числа  ко­рень из: на­ча­ло ар­гу­мен­та: N конец ар­гу­мен­та имеет вид: A,00a1a2 ..., an ..., где A  — целая часть числа  ко­рень из: на­ча­ло ар­гу­мен­та: N конец ар­гу­мен­та , a1, a2, ..., an, ...  — цифры от 0 до 9.

Всего: 1000    1–20 | 21–40 | 41–60 | 61–80