Всего: 71 1–20 | 21–40 | 41–60 | 61–71
Добавить в вариант
Петя хочет проверить знания своего брата Коли — победителя олимпиады ”Высшая проба” по математике. Для этого Петя задумал три натуральных числа a, b, c, и вычислил x = НОД(a, b), y = НОД(b, c), z = НОД(c, a). Затем он написал на доске три ряда по пять чисел в каждом:
6, 8, 12, 18, 24
14, 20, 28, 44, 56
5, 15, 18, 27, 42
Петя сообщил Коле, что одно из чисел в первом ряду равно x, одно из чисел во втором ряду равно y, одно из чисел в третьем ряду равно z, и попросил угадать числа x, y, z. Подумав несколько минут, Коля справился с задачей, правильно назвав все три числа. Назовите их и вы. Докажите, что существует единственная такая тройка (x, y, z).
Петя хочет проверить знания своего брата Коли — победителя олимпиады ”Высшая проба” по математике. Для этого Петя задумал три натуральных числа a, b, c, и вычислил x = НОД(a, b), y = НОД(b, c), z = НОД(c, a). Затем он написал на доске три ряда по пять чисел в каждом:
6, 8, 12, 18, 24
14, 20, 28, 44, 56
5, 15, 18, 27, 42
Петя сообщил Коле, что одно из чисел в первом ряду равно x, одно из чисел во втором ряду равно y, одно из чисел в третьем ряду равно z, и попросил угадать числа x, y, z. Подумав несколько минут, Коля справился с задачей, правильно назвав все три числа. Назовите их и вы. Докажите, что существует единственная такая тройка (x, y, z).
Какое наибольшее количество подарков для детей можно собрать из 198 пряников, 462 конфет и 132 шоколадок, чтобы в каждом подарке было одинаковое количество пряников, одинаковое количество конфет и одинаковое количество шоколадок и все пряники, конфеты и шоколадки были использованы?
В таблице расставлены 16 различных натуральных чисел. Для каждой строки и каждого столбца таблицы нашли наибольший общий делитель расположенных в нем чисел. Оказалось, что все найденные восемь чисел различны. Для какого наибольшего n можно утверждать, что в такой таблице найдется число не меньше n?
(А. Храбров)